Electronic Structure and Magnetic Properties of Fe_2YAI (Y = Ti, Cr, Mn, Cu) Heusler Alloys

¹Sambo Jamaludeen,²Vishal Jain, ³S K Panday, ³R P Sharma
¹Assistant Lecturer, ²Assistant Professor, ³Associate Professor, ⁴Associate Professor
¹Department of Physics, ¹Department of Physics, ¹Department of Physics, ¹Department of Physics, ¹Gombe State University, Tudun Wada PMB 127 Gombe State Nigeria
²Geetanjali Institute of Technical Studies, Udaipur 302132, Rajasthan, India
³NIMS University, Jaipur 303121, Rajasthan, India

Abstract: In this paper we were reported electronic structure and magnetic properties of Fe_2YAI (Y = Ti, Cr, Mn, Cu) Heusler alloys by using SPRKKR package. In order to calculate the ground state properties and to determine the more stable structure for the Fe_2YAI (X = Ti, Cr, Mn, Cu) compounds, we have used the energy minimization procedure. The calculated magnetic moment underestimates from experimentally obtained values and the calculated magnetic moment by Slater Pauling rule. Fe_2CrAI band structure calculations indicate metallic behavior in the majority spin band, while an energy band gap of 0.401eV is observed at the Fermi energy level in the minority spin band. In the case of Fe_2MnAI , both band structure calculations and the DOS indicate metallic behavior in the majority spin dang point 0.42 eV is observed in minority spin band.

IndexTerms - Heusler alloys, Density Functional Theory, SPRKKR, Electronic Structure Properties, Magnetic Properties.

I.INTRODUCTION

During the last few years a lot of attention was paid to Heusler alloys due to their wide range of properties which are potentially used in magnetic and electronic industries (Graf et al. 2016; Jain et al. 2017, Chandra et al. 2018, Chandra et al. 2018a). Heusler alloys are intermetallic compounds with the general formula X_2YZ or XYZ. Here, X and Y are transition metals and Z is an element of the III-V groups. Among them Fe-based alloys have aroused the great interest in the development of electronic devices used around the world, such as mobile phones, computers, memory devices, inductor, transformers and other nano electronic components. In this work, the detail electronic structure properties of Fe₂YAl (Y= Ti,Cr, Mn, Cu) (Fm-3m) structure have been investigated by first-principles calculations. It is recognized that the density functional theory (DFT) has been successfully applied to the first-principles calculations of ground state properties of various materials. During the last years many experimental groups have tried to synthesize them mainly in the form of thin films.

The Fe₂TiAl is a very important in the area of aeronautics and astronautics because Fe₂TiAl has high melting temperature, low density, good environmental resistance, high thermal conductivity, attractive modulus, etc (Adebambo et al, 2016). Also, most Febased full-Heusler alloys with chemical formula Fe₂MnZ have been predicted to be half-metallic (Jain et al. 2014, Fujii et al, 1995). Structure and magnetic properties of Fe_{2+x}Mn_{1-x}Al Heusler compounds have been investigated by experimentalists and theoreticians (Paduani et al. 2007, Buchelnikov et al. 2014). These interesting magnetic materials are considered to be very promising for technological applications. Sharma and Pilani investigated the electronic, magnetic optical properties of Fe₂YAl (Ti, V and Cr) and observed that these properties changes with atomic configuration of Heusler alloys (Sharma and Pilani, 2013). They were observed that for the majority spin state Fe₂CrAl compound has high density of states and shows 100% spin polarization in the vicinity of the Fermi level. The total magnetic moment is consistent with Slater-Paulings rule and in excellent agreement with the experimental data. According to most reviews the half metallicity in Fe based Heusler alloys makes to them to serve as alternative materials for spintronics devices (Adebambo et al, 2016).

II. COMPUTATIONAL

We have performed the self consistent band calculations in the generalized gradient approximations (GGA) for full-relativistic mode using SPRKKR package (Ebert, 2012). Perdew, Burke, and Ernzerhof exchange correlation potential has been used for calculation. The equilibrium lattice constants of all these alloys are obtained by minimum energy optimization. About 4000 k-points and 40 energy points were used in SPR-KKR and basis functions up to 1 = 3 were included.

The full-Heusler compounds generally crystallize in two possible structures: the Hg₂CuTi-type L2₁ structure and the Cu₂MnAlstructure. L2₁ structure is represented by the generic formula X₂YZ, where X and Y denote transition metal elements and Z is s– element. The structure is composed off our interpenetrating face-centered cubic (fcc) lattices with positions described with the Wyckoff coordinates as: A (0, 0, 0), B (1/4, 1/4, 1/4), C (1/2, 1/2, 1/2) and D (3/4, 3/4, 3/4). The Cu₂MnAl-type full-Heusler compound as the structure where the X atoms occupy the (A, C) sites, while in Hg₂CuTi-type structure the (A, B) sites are occupied by X atoms. In this work the calculations are done for Cu₂MnAl type L2₁ order Fe₂YAl (Y = Mn, Cr, Cu, Ti. The crystal structure is shown in fig.1

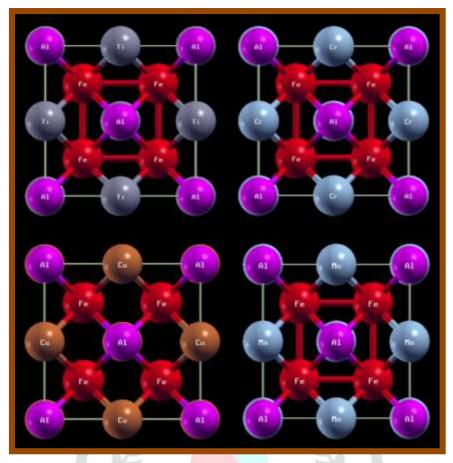


Fig. 1: Xcrysdens Crystal structure view of Fe₂YAl (Y=Ti, Cr, Mn and Cu)

III. RESULTS AND DISCUSSION

In order to calculate the ground state properties and to determine the more stable structure for the Fe₂YAl (X = Ti, Cr, Mn, Cu) compounds, we have used the energy minimization procedure. In this procedure, the total energies are calculated for Cu₂MnAl phases for the different volumes around the equilibrium cell volume, where the plots of the calculated total energies versus reduced volume for these compounds are given in Fig. 2(a) to 2(d). The calculated total energies are fitted to the Gaussian equation peak fitting to determine the minimized equilibrium lattice constant. In addition, the calculated equilibrium parameters, converged energy and Fermi energy are given in Table 1, which also contains results from earlier theoretical works. On the whole, our computed ground state parameters are in good agreement with previous results in the literature. More precisely, our calculated values of the lattice constant are slightly underestimated (overestimated) as compared to their corresponding theoretical values.

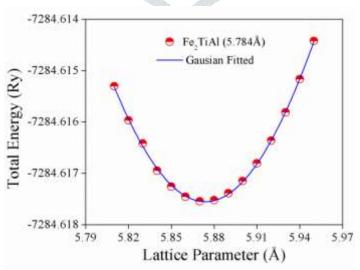
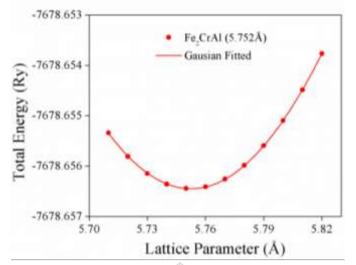
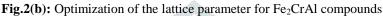
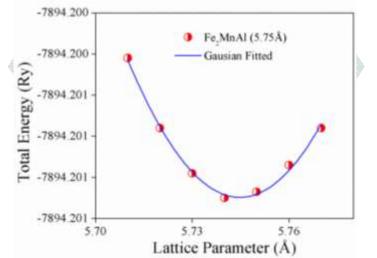
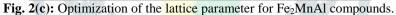






Fig. 2(a): Optimization of the lattice parameter for Fe₂TiAl compounds.

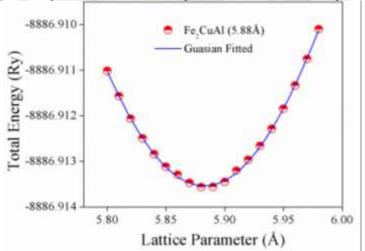


Fig.2(d): Optimization of the lattice parameter for Fe₂CuAl compounds.

Sample	Lattice Parameter (Å)	Converged Energy (Ry)	Fermi Energy (Ry)					
	Fe ₂ TiAl							
Calculated	5.874	-7284.61756	0.756					
Prev. Rep. Theo.	5.778 ^a							
Prev. Rep. Exp.	5.858 ^a							
Fe ₂ CrAl								

Table 1 Obtained Lattice Parameters, Converged Energy and Fermi Energy

Calculated	5.752	-7678.65639	0.817					
Prev. Rep. Theo.	5.610 ^a							
Prev. Rep. Exp.	5.811 ^a							
Fe2MnAl								
Calculated	5.650	-7894.18490						
Prev. Rep. Theo.	5.830 ^b							
Prev. Rep. Exp.	5.850°							
Fe ₂ CuAl								
Calculated	5.883	-8886.91348	0.722					
Prev. Rep. Theo.								
Prev. Rep. Exp.	5.830 ^d							

^a(Shreder et al, 2005), ^b(Azar et al, 2012), ^c(Vinesh et al, 2009), ^d(Gilleßen & Dronskowski, 2010)

Fig. 3 (a, b, c, d) shows DOS for Fe₂YAl (Y =Ti, Cr, Mn, Cu) majority and minority spin bands respectively and Fig. 4 (a, b, c d) shows band structures of all samples. In the DOS of Fe₂TiAl, the majority and minority spin densities shows metallic behavior. The band structure calculation is in good agreement (Fig. 5a and b) with DOS (Fig. 6a) as both majority and minority spin bands show metallic behavior. These calculations show that Fe₂TiAl has metallic nature. In the case of Fe₂CrAl, both band structure calculations (Fig. 4b) and the DOS (Fig. 3b) indicate metallic behavior in the majority spin band, while an energy band gap of 0.401eV is observed at the Fermi energy level in the minority spin band. The majority spin conduction bands cross the Fermi level, while there is an energy gap at all points shows at the Fermi level for the minority spin bands.

In the case of Fe₂MnAl, both band structure calculations (Fig. 4c) and the DOS (Fig. 3c) indicate metallic behavior in the majority spin band, while an energy band gap of 0.42 eV is observed at the Fermi energy level in the minority spin band. In the case of Fe₂CuAl, both band structure calculations (Fig. 4d) and the DOS (Fig. 3d) indicate metallic behavior in the majority spin band and the minority spin band. The values of total and partial spin magnetic moments of Fe₂YAl (Y=Ti, Cr, Mn, Cu) have been calculated are summarized in Table 5.2. The obtained values of magnetic moment are underestimated with the Slater–Pauling curve (SPC) for full Heusler alloys.

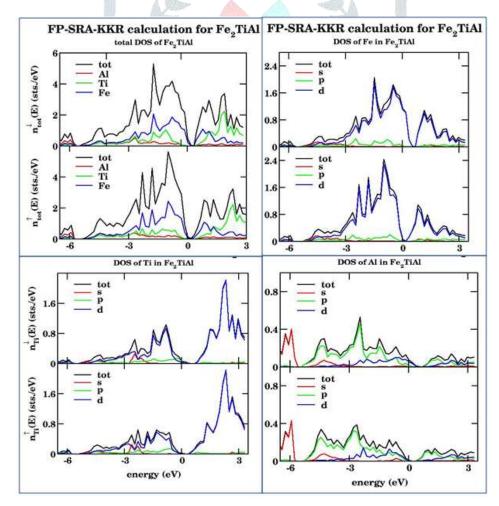


Fig. 3(a): Total and partial density of states of Fe₂TiAl

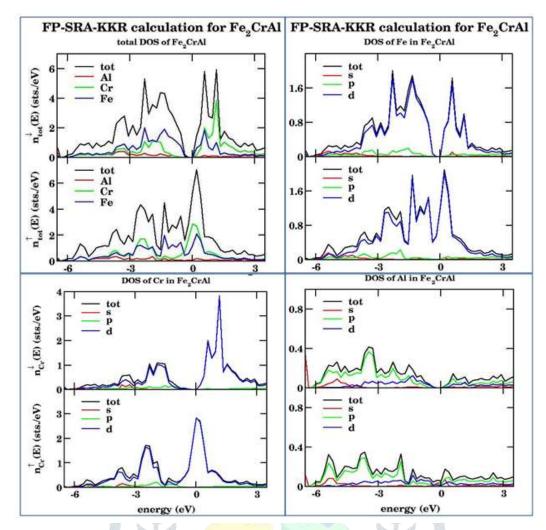


Fig. 3(b): Total and partial density of states of Fe₂TiAl

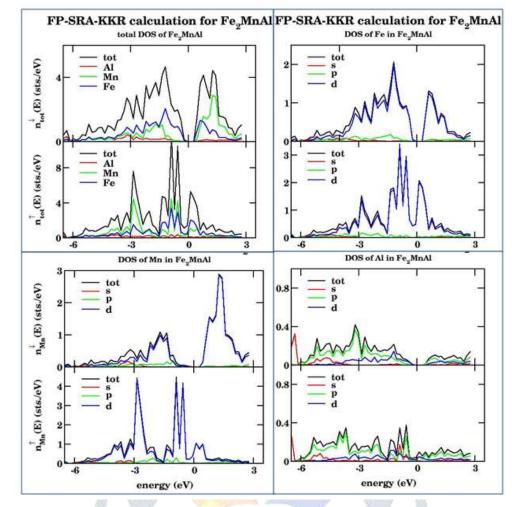
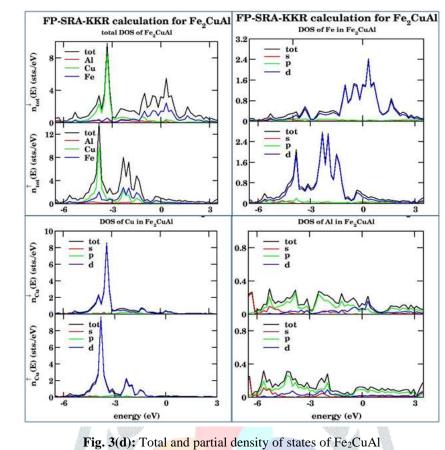



Fig. 3(c): Total and partial density of states of Fe₂MnAl

Table 2: Of	stained Magne			ed Band Gap a	t Gamma point Fe	ermi energy	
Magnetic moments (M)							
Sample	M-Fe ₂	M V(m)	M-Al	M-Total	Behavior	Band Gap	
	(μ _B)	$M-Y(\mu_B)$	(μ _B)	(μ _B)		(eV)	
Fe ₂ TiAl							
Calculated	0.88	-0.12	-0.034	0.64	Metallic		
Prev. Rep. Theo.			X	0.95ª	Metallic		
Prev. Rep. Exp.				0.10 ^a	Metallic		
Fe ₂ CrAl							
Calculated	-0.15	1.49	-0.03	1.31	Half Metallic	0.40	
Prev. Rep. Theo.				0.94ª	Half Metallic	0.48 ^a	
Prev. Rep. Exp.				1.67 ^a	Half Metallic		
Fe ₂ MnAl							
Calculated	-0.08	2.17	-0.001	2.09	Half Metallic	0.42	
Prev. Rep. Theo.	-0.06	2.06	-0.006	2.00 ^b	Half Metallic	0.49 ^b	
Prev. Rep. Exp.				1.80 ^c	Half Metallic		
Fe ₂ CuAl							
Calculated	4.5528	0.0537	-0.153	4.45	Metallic		
Prev. Rep. Theo.	3.9 ^d	0.00 ^d	0.00 ^d	3.80 ^d	Metallic		
Prev. Rep. Exp.				4.02 ^d	Metallic		

Table 2: Ot	otained N	Aagnetic I	Parameters and	Observed	Band G	ap at (Gamma j	point Fei	mi energy

^a(Shreder et al, 2005), ^b(Azar et al, 2012), ^c(Vinesh et al, 2009), ^d(Gilleßen & Dronskowski, 2010)

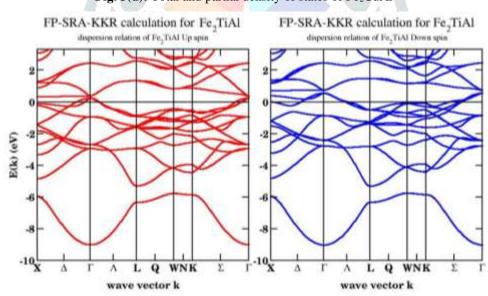


Fig. 4(a):E(k) curve of Fe₂TiAl

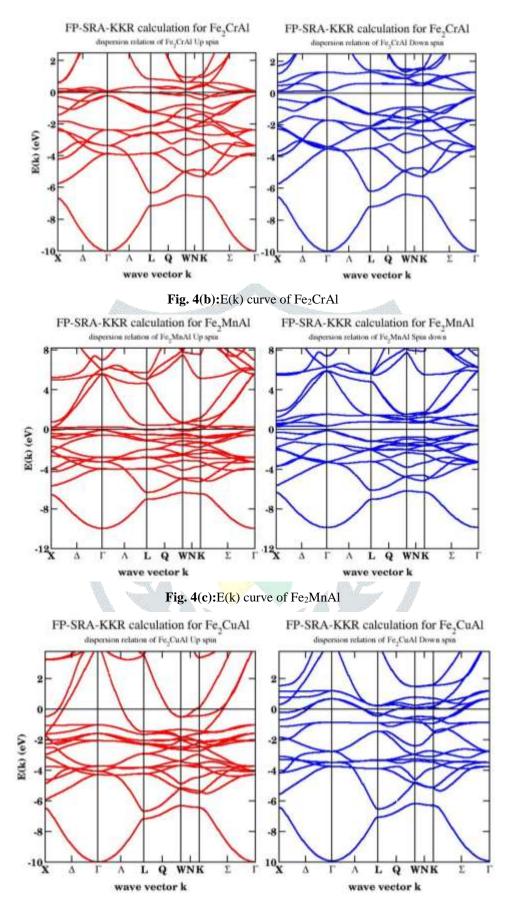


Fig. 4(d):E(k) curve of Fe₂CuAl

IV. CONCLUSION

The aim of this work is to study the electronic structure properties of Fe₂YAl (Y=Ti, V, Cr, Cu). The lattice parameter, magnetic moment, half metallicity,band gap and spin polarization have been investigated. It is confirmed that full-Heusler alloy Fe₂CrAl, Fe₂MnAl exhibits Half metallic behavior and Fe₂TiAl, Fe₂CuAl exhibits metallic behavior. The calculated magnetic moment underestimates from experimental studies and Slater Pauling curve behavior.

V. ACKNOWLEDGMENT

The research work was supported by Geetajali Institute of Technical Studies, Udaipur, Rajasthan.

References

[1] Adebambo, P. O., Adetunji, B. I., Olowofela, J. A., Oguntuase, J. A., & Adebayo, G. A. 2016. Prediction of metallic and half-metallic structure and elastic properties of $Fe_2Ti_{1-x}Mn_xAl$ Heusler alloys. Physica B: Condensed Matter, 485, 103-109.

[2] Azar, S. M., Hamad, B. A., Khalifeh, J. M. 2012. Structural, electronic and magnetic properties of $Fe_{3-x}Mn_xZ$ (Z= Al, Ge, Sb) Heusler alloys. Journal of Magnetism and Magnetic Materials, 324(10), 1776-1785.

[3] Buchelnikov, V. D., Zagrebin, M. A., Sokolovskiy, V. V., Taranenko, I. A., Zayak, A. T. 2014, Investigation of structural and magnetic properties of Heusler $Fe_{2+x}Mn_{1-x}Al$ alloys by first principles method. Physica Status Solidi (c), 11(5 - 6), 979-983.

[4] Chandra, A. R., Jain, V., Lakshmi, N., Jain, V. K., Soni, K., Jain, R. 2018, Electronic structure properties of new equiatomic CoCuMnZ (Z= In, Sn, Sb) quaternary Heusler alloys: An ab-initio study. Journal of Alloys and Compounds, 748, 298-304.

[5] Chandra, A. R., Jain, V., Lakshmi, N., Jain, R., & Jain, V. K. (2018a, April). Study of the electronic structure properties in Co₂NbIn/Sn Heusler alloys. In AIP Conference Proceedings (Vol. 1942, No. 1, p. 090037). AIP Publishing.

[6] Ebert, H. 2012, The Munich SPR-KKR package, version 6.3 http://ebert. cup. uni-muenchen. de.

[7] Fujii, S., Ishida, S., & Asano, S. 1995, A half-metallic band structure and Fe₂MnZ (Z= Al, Si, P). Journal of the Physical Society of Japan, 64(1), 185-191.

[8] Gilleßen, M., & Dronskowski, R. 2010, A combinatorial study of inverse Heusler alloys by first principles computational methods. Journal of computational chemistry, 31(3), 612-619.

[9] Graf, T., Felser, C., & Parkin, S. S. 2016, Heusler Compounds: Applications in Spintronics. Handbook of Spintronics, 335-364.

[10] Jain, V. K., Jain, V., Lakshmi, N., &Venugopalan, K. (2014, April). Ab initio study of Fe₂MnZ (Al, Si, Ge) Heusler alloy using GGA approximation. In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013 (Vol. 1591, No. 1, pp. 1130-1132). AIP Publishing.

[11] Jain, V. K., Lakshmi, N., Jain, R., Jain, V., Chandra, A. R., & Venugopalan, K. 2017, Electronic structure, magnetic and optical properties of quaternary Fe_{2-x} Co_xMnAl Heusler alloys. Journal of Materials Science, 52(11), 6800-6811.

[12] Paduani, C., Migliavacca, A., Pöttker, W. E., Schaf, J., Krause, J. C., Ardisson, J. D., & Yoshida, M. I. 2007, A study of Fe_{2+x}Mn_{1-x}Al alloys: Structural and magnetic properties. Physica B: Condensed Matter, 398(1), 60-64.

[13] Sharma, V., & Pilania, G. 2013, Electronic, magnetic, optical and elastic properties of Fe₂YAl (Y= Ti, V and Cr) using first principles methods. Journal of Magnetism and Magnetic Materials, 339, 142-150.

[14] Shreder, E. I., Svyazhin, A. D., & Fomina, K. A. 2012, Optical properties of Fe₂NiAl and Fe₂MnAl Heusler alloys. The Physics of Metals and Metallography, 113(2), 146-152.

[15] Vinesh, A., Hina Bhargava, N. Lakshmi, and K. Venugopalan."Magnetic anisotropy induced by high energy ball milling of Fe₂MnAl." Journal of Applied Physics 105, no. 7 (2009): 7A309.